Acid-Promoted Living Ring-Opening Polymerization of Cyclic Carbonates with B(OR)₃

Yuji Shibasaki, Fumio Sanda, and Takeshi Endo*,†

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Received November 30, 1999; Revised Manuscript Received March 8, 2000

ABSTRACT: Ring-opening polymerization of cyclic carbonates (1,3-dioxepan-2-one and 5,5-dimethyl-1,3-dioxan-2-one) with triethyl and triisopropyl borates as initiators promoted by hydrogen chloride was carried out. The molecular weights of the obtained polymers could be controlled by the amount of alkylborates, and their polydispersity ratios were small (\sim 1.15). The polymerization obeyed good first-order kinetics throughout the reaction. After the monomers were completely consumed, the polymerization proceeded again quantitatively when the same amount of monomers were introduced into the polymerization mixtures. 1 H and 13 C NMR spectroscopic studies suggested that the polymerization proceeded in a living manner via insertion of the monomer to the boron—oxygen bond.

Introduction

Lewis acids play an important roll in cationic ringopening polymerization of cyclic monomers as well as of vinyl monomers. Though versatile, these catalysts generally cause back biting reaction forming cyclic oligomers which makes it difficult to control the molecular weights (M_n) and polydispersity ratios (M_w/M_n) of the polymers.¹ The stoichiometric reaction between lactones with various Lewis acids has been studied, where ω -halogenated carboxylic acids are formed in all cases.² Especially in the cases of Lewis acids with energetically favorable d-orbitals such as SnBr4 and ZnBr₂, metal-oxygen bonds form to produce high $M_{\rm n}$ polymers (\sim 70 000) via an insertion mechanism at 60 °C, although their polydispersities of the formed polymers are large (\sim 1.7). This insertion mechanism has been also demonstrated in the ring-opening polymerization of six-membered cyclic carbonates with TiCl₄³ and alkyltin(IV) chloride initiators⁴ to give the corresponding polycarbonates without decarboxylation reaction, but $M_{\rm n}$ cannot be precisely controlled by changing the feed ratios, and the polydispersities are large (\sim 1.7). Aluminum alkoxides can also produce polycarbonate via an insertion mechanism in the polymerization of nonsubstituted six-membered cyclic carbonate (6CC) at 80 °C. Although the polymerization is not "living", the molecular weight is controllable by adjusting the initiatorto-monomer ratio.5

Organo borons are also useful compounds showing wide variety of catalytic activities in organic synthesis, but their use for polymer synthesis has been rather limited. Our preliminary work on BX $_3$ (X = Cl or Br) in the polymerization of a seven-membered cyclic carbonate (7CC) has revealed that the propagating species is stabilized with boron atom to afford a living polymer. We describe here a novel method for ring-opening polymerization of cyclic carbonates with boron alkoxides in the presence of HCl under mild conditions to give polymers with controlled M_n and M_w/M_n in high yields

suppressing side reactions such as decarboxylation and back-biting.

Experimental Section

Materials. CH_2Cl_2 and $CDCl_3$ were distilled sequentially over P_2O_5 and CaH_2 under nitrogen. The monomers, 1,3-dioxepan-2-one $(7CC)^7$ and 5,5-dimethyl-1,3-dioxan-2-one (DM6CC),8 were prepared according to the literature and stored at -20 °C under nitrogen. Triethyl borate $[B(OEt)_3]$ and triisopropyl borate $[B(O-i-Pr)_3]$ were purchased from Aldrich and distilled under nitrogen before use. A 2.0 M HCl solution in diethyl ether (Et_2O) was purchased from Aldrich and used without further purification.

Measurements. 1 H and 13 C NMR spectra were recorded with a JEOL Lambda-300 spectrometer. Number and weightaverage molecular weights ($M_{\rm n}$ and $M_{\rm w}$) were measured by gel permeation chromatography (GPC) on a Tosoh HLC-8120 system equipped with two consecutive polystyrene gel columns eluted with tetrahydrofuran (THF) at a flow rate of 1.0 mL·min $^{-1}$ calibrated by standard polystyrenes.

Polymerization. All manipulations were carried out under dry nitrogen. A typical procedure was following: Into a 30 mL baked glass flask equipped with a three-way stopcock was placed a solution of 0.116 g (1.0 mmol) of 7CC and 20 μ L (0.010 mmol) of B(OEt)₃ in 0.9 mL of CH₂Cl₂. The polymerization was initiated by the addition of 50 μ L (0.10 mmol) of a HCl solution (2 M) in Et₂O at 25 °C. After a set time the reaction mixture was poured into 100 mL of methanol/n-hexane (1/1 volume ratio) to precipitate a polymer. The precipitate was filtered, washed sequentially with methanol (5 mL), n-hexane (5 mL), and dried at 25 °C for 5 h in vacuo.

Results and Discussion

Scheme 1 and Table 1 summarize the results of the ring-opening polymerization of a nonsubstituted seven-membered cyclic carbonate (7CC) with B(OEt)₃—HCl·Et₂O and B(O-*i*-Pr)₃—HCl·Et₂O initiator systems in CH₂Cl₂ at 25 °C. In our previous report, we have examined HCl·Et₂O as an initiator for the polymerization of 7CC in CH₂Cl₂ at 25 °C, but it did not work effectively. 10

^{*} To whom all correspondence should be addressed.

[†] Present address: Department of Polymer Science and Engineering, Faculty of Engineering, Yamagata Universikty, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.

Table 1. Polymerization of 7CC Initiated with Trialkyl Borates^a

run	initiator system	$[M]_0/[B^{3+}]_0$	[HCl] ₀ /[B ³⁺] ₀	conv ^b (%)	yield ^c (%)	$M_{ m n}{}^d$	$M_{\rm w}/M_{ m n}{}^d$
1	B(OEt) ₃	40	0	1	e	e	\overline{e}
2	B(OEt) ₃ /HCl·Et ₂ O	40	20	98	90	1900	1.19
3	B(OEt) ₃ /HCl·Et ₂ O	38	10	98	91	1800	1.16
4	B(OEt) ₃ /HCl·Et ₂ O	90	10	98	85	3500	1.17
5	B(OEt) ₃ /HCl·Et ₂ O	135	10	98	92	6500	1.14
6	$B(O-i-Pr)_3$	40	0	0	e	e	e
7	$B(O-i-Pr)_3/HCl\cdot Et_2O$	40	10	99	90	1700	1.15
8	$B(O-i-Pr)_3/HCl\cdot Et_2O$	55	10	99	92	2100	1.15

^a Conditions; [M]₀ = 1 mol/L in CH₂Cl₂ at 25 °C for 24 h. ^b Determined by ¹H NMR. ^c Methanol/n-hexane (1/1 volume ratio)—insoluble part. ^d Determined by GPC (THF, polystyrene standards). ^e Not determined.

Table 2. Polymerization of DM6CC Initiated with Triethyl Borate^a

run	initiator	$[M]_{o}/[B^{3+}]_{0}$	[HCl] ₀ /[B ³⁺] ₀	time (h)	conv ^b (%)	yield (%)	$M_{ m n}{}^c$	$M_{\rm w}/M_{ m n}{}^c$
1	B(OEt) ₃	30	0	48	0	d	d	d
2	$B(OEt)_3/HCl \cdot Et_2O$	60	10	48	15	d	d	d
3	$B(OEt)_3/HCl \cdot Et_2O$	30	20	48	86	81	1570	1.12
4	$B(OEt)_3/HCl \cdot Et_2O$	60	30	96	82	75	2200	1.11
5	$B(OEt)_3/HCl \cdot Et_2O$	90	30	96	91	83	2700	1.16
6	B(OEt) ₃ /HCl·Et ₂ O	120	30	96	90	83	3100	1.11

^a Conditions; [M]₀ = 1 mol/L in CH₂Cl₂ at 25 °C. ^b Determined by ¹H NMR. ^c Determined by GPC (THF, polystyrene standards). ^d Not determined.

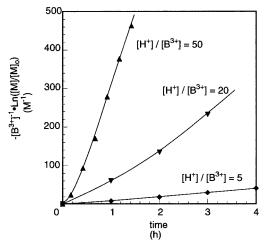
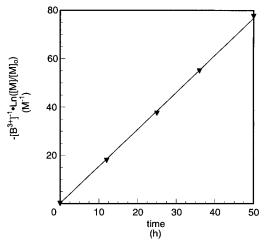
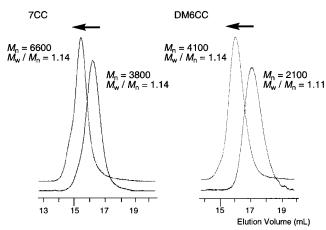
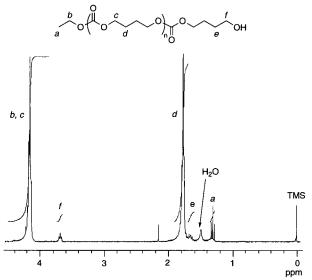



Figure 1. First-order kinetic plots for the polymerization of 7CC. Conditions: in CH_2Cl_2 at 25 °C, $[M]_0 = 1$ M, and $[HCl\cdot$ $Et_2O|_0/[B(OEt)_3]_0 = 5$, 20, and 50.

Scheme 2

Use of B(OEt)₃ alone did not produce the polymer as well (run 1). The combination of B(OEt)₃ and HCl·Et₂O provided the polymer of 7CC quantitatively (runs 2-5). The $M_{\rm n}$ varied with the ratio of the borate to the monomer, but did not with the amount of HCl·Et2O (runs 2 and 3). Although B(O-i-Pr)3 also did not work as an initiator by itself (run 6), it initiated the polymerization smoothly in the presence of 10 equiv of HCl· Et₂O, where the M_n and M_w/M_n could be controlled (runs 7 and 8). Thus, in these polymerizations, it was confirmed that HCl·Et₂O only served as a promoter for the polymerization of 7CC.


Scheme 2 and Table 2 summarize the results of the polymerization of trimethylene carbonate containing dimethyl group as the substituent (DM6CC) with B(OEt)₃-HCl·Et₂O initiator system in CH₂Cl₂ at 25 °C. Although B(OEt)₃ showed no polymerizability (run 1), in the presence of more than 20 equiv of HCl·Et₂O to


Figure 2. First-order kinetic plot for the polymerization of DM6CC. Conditions: in CH_2Cl_2 at 25 °C, $[M]_0 = 1$ M, and $[HCl\cdot Et_2O]_0/[B(OEt)_3]_0 = 20.$

B(OEt)₃ the corresponding polymers were obtained in high yield where the molecular weights could be tailored varying with the monomer/initiator ratios keeping small polydispersity ratios (runs 3-6). The decrease of the HCl·Et₂O amount (10 equiv to B(OEt)₃) resulted in significant decrease of monomer conversion (run 2). These results might suggest that HCl·Et₂O acted a promoter in this system.

Figure 1 illustrates the first-order kinetic plots for the polymerization of 7CC with B(OEt)₃-HCl·Et₂O initiator system in CH₂Cl₂ at 25 °C varying the amount of HCl· Et_2O ; $[HCl\cdot Et_2O]_0/[B(OEt)_3]_0 = 5$, 20, and 50. They showed some acceleration in early stage becoming a linear variation to indicate that the absence of termination reaction, but slow initiation in the polymerization. The rate constants (k_p) of the 7CC polymerization were estimated as 10, 87, and 340 $M^{-1} \cdot h^{-1}$ (in CH₂Cl₂ at 25 °C), respectively. Figure 2 illustrates the first-order kinetic plots for the DM6CC polymerization with B(OEt)₃-HCl·Et₂O initiator system in CH₂Cl₂ at 25 °C, showing a linear variation to indicate the absence of termination. The rate constant (k_p) of the DM6CC polymerization at 25 °C ([HCl·Et₂O $]_0$ /[B(OEt)₃]₀ = 20) was estimated as 1.6 M⁻¹·h⁻¹, much smaller than those

Figure 3. GPC profiles of the prepolymers obtained by the polymerization of 90 equiv of 7CC and 60 equiv of DM6CC with $B(OEt)_3$ in the presence of $HCl \cdot Et_2O$ (10 and 30 equiv vs $B(OEt)_3$), and the postpolymers obtained by the addition of the same amounts of the monomers.

Figure 4. ¹H NMR spectrum (300 MHz, CDCl₃) of P7CC obtained by the polymerization in run 3 in Table 1.

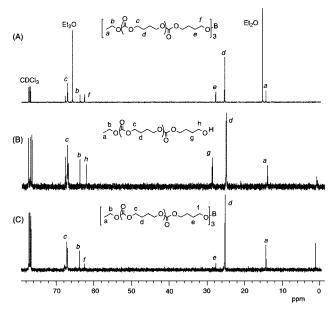

of 7CC. To verify the living nature, the second feed experiments were carried out in the polymerization of 7CC and DM6CC. 90 and 60 equiv of 7CC and DM6CC were polymerized with $B(OEt)_3-HCl\cdot Et_2O$ initiator system in CH_2Cl_2 to obtain the prepolymers, respectively. After the quantitative consumption of the first monomers, the same amounts of the monomers were recharged into the polymerization mixtures to conduct the post polymerization, respectively. In both cases, the elution peaks in GPC shifted to the higher M_n region maintaining the small M_w/M_n as shown in Figure 3.

Figure 4 illustrates the 1H NMR spectrum of P7CC obtained by the polymerization in run 3 in Table 1. In addition to signals c and d assignable to α - and β -methylene protons of the carbonate moiety at 4.17 and 1.75 ppm, signals a and f assignable to terminal methyl and α -methylene proton signals of a hydroxyl group were observed at 1.30 and 3.68 ppm, respectively. The integration ratio of the signals a to f was 3/2, which agreed well with the theoretical value. Table 3 summarizes the dependence of the average unit number of the oligo 7CC estimated by 1H NMR (x(NMR)) and GPC (x(GPC)) on the feed ratio of the monomer to initiator. Both values almost agreed with one-third of the [M] $_0$ /

Table 3. Polymerization of 7CCa

run	[M] ₀ /[B(OEt) ₃] ₀	conv ^b (%)	X _(NMR) ^c	$X_{(GPC)}^{d}$	$M_{\rm w}/M_{\rm n}{}^d$
1	9	99	3.7	3.8	1.37
2	18	99	5.2	9.8	1.20
3	27	99	7.3	13	1.15
4	45	91	14	18	1.14
5	50	99	17	21	1.14

 a Conditions: in CH₂Cl₂ at 25 °C for 24 h, [M]₀ = 1 M, and [HCl]₀/[B(OEt)₃]₀ = 10. b Determined by $^1\mathrm{H}$ NMR. c Average unit number calculated by $^1\mathrm{H}$ NMR. d Average unit number calculated by GPC (THF, polystyrene standards).

Figure 5. ^{13}C NMR spectra (75 MHz, CDCl₃) of (a) living P7CC obtained by the polymerization of 7CC (9 equiv) with B(OEt)₃—HCl·Et₂O (1/10 molar ratio) in CDCl₃ at 25 °C for 12 h, (b) P7CC obtained by quenching the living P7CC with pyridine, followed by washing with HCl(aq) and subsequent extraction with toluene, (c) and P7CC treated with BH₃ in THF at 0 °C for 30 min, and then 25 °C for 1 h.

 $[B(OEt)_3]_0$, suggesting that all the three ethoxide moieties on the boron initiated the polymerization.

Figure 5 illustrates the ^{13}C NMR spectra of (A) living polymer obtained by the living polymerization of 7CC with B(OEt)_3–HCl·Et_2O initiator system, (B) P7CC obtained by quenching the living P7CC with pyridine, followed by washing with HCl(aq) and subsequent extraction with toluene, and (C) and P7CC treated with BH $_3$ in THF at 0 °C for 30 min, then 25 °C for 1 h (Scheme 3). Signals $a\!-\!d$ assignable to terminal ethyl group and α - and β -methylenes of the carbonate moiety were observed in all the samples. In Figure 5A, signals

Scheme 4

Initiation

$$\begin{bmatrix} H^{+} \cdots OEt & & & & \\ EtO - B & & & & & \\ OEt & H^{+} & O & & & \\ OEt & H^{+} & O & & & \\ \end{bmatrix} 2CI^{-} \xrightarrow{7CC} Et O O O B OEt OEt$$

Propagation

(I)
$$\frac{n \, 7CC}{HCI}$$
 Et O Living P7CC (II)

e and f adjacent to a borate moiety were observed at 27.3 and 62.3 ppm, respectively. In Figure 5B, the two signals disappeared while signals g and h assignable to β - and α -methylenes of a hydroxyl group appeared at 28.8 and 62.1 ppm, respectively. In Figure 5C, signals *e* and *f* assignable to the β - and α -methylens of the terminal borate moiety appeared again at 27.5 and 62.5 ppm, respectively. These results might suggest that the propagating polymer end should be a stable borate structure. The formation of a hydroxyl chain end by protonation of the terminal borate with HCl was negligible by these results.

Scheme 4 depicts the possible mechanism of the polymerization of 7CC with B(OEt)3-HCl·Et2O initiator system. The monomer activated with HCl·Et₂O coordinates the borate, followed by the attack of ethoxy group to the carbonyl carbon of the monomer reproducing the borate structure (I). The propagation may proceed via a monomer insertion to the B-O bond. Consequently, the polymer isolated after hydrolysis by HCl(aq) has ethyl carbonate and hydroxyl groups as the initial and terminal units, respectively.

Summary

In this article, we demonstrated the novel HCl promoted living ring-opening polymerization of a nonsubstituted seven-membered (7CC) and dimethyl substituted six-membered cyclic carbonates (DM6CC) with $B(OR)_3$ (R = Et and *i*-Pr) as the initiator. The addition of HCl·Et₂O promoted the monomer insertion to the B-O bond at ambient temperature to produce the corresponding polymers with controlled M_n and small $M_{\rm w}/M_{\rm n}$ values.

References and Notes

- (1) (a) Dale, J.; Daasvatn, K.; Grønneberg, T. Makromol. Chem. 1977, 178, 873. (b) Bucquoye, M. R.; Goethals, E. J. Makromol. Chem. 1981, 182, 3379.
- (a) Olah, C. A.; Karpeles, R.; Narang, S. C. *Synthesis* **1982**, 963. (b) Kricheldorf, H. R.; Sumbel, M. V. *Makromol. Chem.* **1988**, 189, 317.
- Kricheldorf, H. R.; Weegen-Schulz, B. J. Macromol. Chem: Pure Appl. Chem. 1995, A32, 1847.
- (a) Kricheldorf, H. R.; Mahler, A. J. Macromol. Chem. Pure Appl. Chem. 1996, A33, 821. (b) Kricheldorf, H. R.; Weegen-Schulz, B. Polymer 1995, 36, 4997. (c) Kricheldorf, H. R.; Weegen-Schulz, B. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 2193. (d) Kricheldorf, H. R.; Jenssen, J.; Kreiser-Saunders: I. Makromol. Chem. 1991, 192, 2391. (e) Kricheldorf, H. R.; Mahler, A. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 2399. (f) Kricheldorf, H. R.; Lossin, M.; Mahler, A. Macromol. Chem. Phys. 1997, 198, 3559.
- (5) (a) Carter, K. R.; Richter, R.; Kricheldorf, H. R.; Hedrick, J. L. Macromolecules **1997**, *30*, 6074. (b) Kühling, S.; Keul, H.; Höcker, H. Makromol. Chem. **1992**, *193*, 1207.
- (6) Shibasaki, Y.; Sanda, F. Endo, T. Macromol. Rapid Commun. submitted for publication.
- Matsuo, J.; Sanda, F.; Endo, T. Macromol. Chem. Phys. 1998, 199, 97,
- Matsuo, J.; Aoki, K.; Sanda, F.; Endo, T. Macromolecules **1998**, 31, 4432.
- In the polymerization of DM6CC, the reaction mixture was diluted with CH₂Cl₂, washed with Na₂CO₃(aq), and dried at 25 °C for 5 h under reduced pressure.

MA9919965